Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-354943.v1

ABSTRACT

Highly pathogenic coronaviruses including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)1,2, Middle East respiratory syndrome coronavirus (MERS-CoV)3,4, and SARS-CoV-15 vary in their transmissibility and pathogenicity. However, infection by all three viruses result in substantial apoptosis in cell culture6-8 and in patient samples9-11, suggesting a potential link between apoptosis and the pathogenesis of coronaviruses. To date, the underlying mechanism of how apoptosis modulates coronavirus pathogenesis is unknown. Here we show that a cysteine-aspartic protease of the apoptosis cascade, caspase-6, serves as an essential host factor for efficient coronavirus replication. We demonstrate that caspase-6 cleaves coronavirus nucleocapsid (N) proteins, generating N fragments that serve as interferon (IFN) antagonists, thus facilitating virus replication. Inhibition of caspase-6 substantially attenuates the lung pathology and body weight loss of SARS-CoV-2-infected golden Syrian hamsters and improves the survival of mouse-adapted MERS-CoV (MERS-CoVMA)-infected human DPP4 knock-in (hDPP4 KI) mice. Overall, our study reveals how coronaviruses exploit a component of the host apoptosis cascade to facilitate their replication. These results further suggest caspase-6 as a potential target of intervention for the treatment of highly pathogenic coronavirus infections including COVID-19 and MERS.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , Weight Loss , COVID-19
2.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-67556.v1

ABSTRACT

SARS-CoV-2 is more infectious and transmissible in humans than SARS-CoV, despite the genetic relatedness and sharing the same cellular receptor. We sought to assess whether human airway organoids can model SARS-CoV-2 infection in the human airway and elucidate the cellular basis underlying its higher transmissibility. We demonstrate that SARS-CoV-2 can establish a productive infection in human airway organoids, in which ciliated cell and basal cell are infected. Wildtype SARS-CoV-2 carrying a furin cleavage motif exhibits comparable replication kinetics to a mutant virus without the motif. Human airway organoids sustain higher replication of SARS-CoV-2 than SARS-CoV, whereas interferon response is more potently induced in the latter than the former. Overall, human airway organoids can model SARS-CoV-2 infection and recapitulate the disposable role of furin cleavage motif for virus transmission in humans. SARS-CoV-2 stealth growth and evasion of interferon response may underlie pre-symptomatic virus shedding in COVID-19 patients, leading to its high infectiousness and transmissibility.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL